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LASER PROPAGATION TEMPORAL  SPECTRA 

I. INTRODUCTION 

This is a technical  report under Contract F30602-72-C-0305 
titled "Investigation of Laser Propagation Phenomena".    This effort 
is aimed at providing theoretical  support to the RADC Laser Propa- 
gation Program in the areas of atmospheric propagation phenomena and 
microturbulence statistics.    The efforts in this report are in 
support of the experimental  program being conducted at RADC.    The 
immediate aim is to give a detailed derivation of the temporal 
spectrum of phase difference fluctuations. 

The work on  temporal  spectra is of interest because it provides 
information on  time scales of phase and arrival   angle useful   to systems 
designers,  and  further phase difference fluctuations are intiinatelv 
related to angle of arrival  fluctuations for small  apertures 
[Zintsmaster,  1971]. 

More generally temporal  spectral measurements provide a simple 
method for manipulating experimental  data to give a check on our knowledge 
of the light-beam turbulence interaction.    It is much easier to instru- 
ment time-spectral measurements because data need be taken for only one 
apparatus setting.    The corresponding spatial  correlations or spatial 
spectra require measurements with apparatus adjusted for many point 
separations. 

Temporal   correlations and spectra are in themselves useful 
quantities to compare with theoretical estimates to gain information 
about atmospheric-turbulence parameters.    In this context, they do not 
suffer from aperture limitations, as do spatial measurements, because 
readily available time lags are large enough to represent spatial 
separations much larger than those conveniently available.    Thus they 
provide a convenient optical means with which to oxainino outer-scale 
effects, which are  important in the low temporal   frequency region of 
the phase difference spectrum.    Further we will  show that the high 
temporal  frequency dependence of the phase difference spectrum is 
easily related to the small separation dependence of the phase structure 
function, thus allowing a convenient experimental check of Ds(p). 

The calculation will be done in three steps.    In the first step 
the definition of time lagged phase difference spectra is written 
in  terms of the phase structure function using Taylor's frozen tur- 
bulence hypothesis.    The result is in terms of a multidimensional 
integral  in rectangular coordinate variables whose integrand includes 
a generalized isotropic Von Karmen index spectrun.    The second step 
involves evaluating for large and small  frequencies all of the indicated 
integrations except the range integration to obtain the differential 
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oath contribution.    The result is put in terms of convenient non- 
dimensional  variables.    The third step is to perform the range inte- 
oration for large and small normalized nondimensional  temporal  frequencies 
and thereby obtain limiting forms for the complete solution.    These forms 
are tabulated for the generalized index of refraction spectrum and for 
the usual  K"11^ high spatial  frequency dependence.    The complete 
solution is obtained for K-11^ inertial  subrange dependence by 
numerical  integration for several normalized separations of interest. 

II.  DERIVATION 

The experimental  situation is shown in Fig. 1, where a wind of 

SOURCE 

?f 

^ ̂  

Vnz 
V>C 

Fig. 1.    Diagram of the experimental measurement. 

constant velocity Vj is blowing.    The spherically diverging beam is 
centered on the z axis.    The +x direction is defined so that 

(1) V x + V,, z, 

where V is the magnitude of the transverse wind and V,|is the component 
of the wind parallel  to the propagation path.    Vn may be either a 
positive or a negative quantity.    The phase difference  ((fe-fl) of ^o 
phase points separated by a distance p in an_x-y plane is recorded 
as a function of time.    The vector distance p makes an arbitrary 
angle e with the +x axis, thus enabling us to determine the Fourier 
transform (F) of the time laaaed phase difference 

(2) w6s(w,t) =F<U2(p2,T+tH1(p1,T+t)) U2(P2.t)-«1(p1.t))> 

for all  relative orientations between the phase points and the 
transverse component of the wind (Vx). 
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(3) (A-B){C-D) = ^{(A-D)2-(A-C)2+(B-C)2-(B-D)2] 

in Eq.   (2) to obtain 

(4) W6s = \ f:{<[(l,2(fr2'T"'t)"<t>l^l't)]2"t({,2(^2'T+t)"*2(P2't)] 

+   C(|.1(p'1»T+t)-((.2(p2,t)]
2-[(|>1(p"1,T+t)-<t)1(F1.t)] j-     . 

Each term in Eq.   (4) may be evaluated in terms of a phase structure 
function 

(5) (♦(p^t^-^Pj.tj))^ = ^(Pi-Pj^i-tj) 

A general expression for the wave structure function  (Dw(p)) is 
obtained by multiplying Hufnagel's  (1964) expression for the square 
of the index of refraction difference by the wave propagation constant 
squared (k2).    The results are 

(6) 

L 

n       0 

Dw(p) = 2k2|d?|dn|Dn[px^Py^]-Dn[0,G,;l; 

where c is the difference range coordinate^ is the average range 
coordinate. 

The phase structure function varies from equality to one-half 
the wave structure function value as the range increases.    Hence 

w      Ds(»' = {?:o}Dw<^ 

where J?'Q[ indicates that the numerical  coefficient is between 0.5 and 

1.0.    Alternatively Eqs.   (6) and (7) are derived from the spectral 
expansion solutions for the wave and phase structure functions in 
Appendix A. 

Using Taylor's frozen turbulence hypothesis 

(8)       D^-vVV ■ "n^-VW- 

 ^  - I — -^~^^-^^*«^» iMBi 
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Substituting Eqs.   (5),  (6),   (7) and (8) into Eq.  (4) yields 

oo        L 

(9) W5S(U) = F ?:gh2 

D
n^x-VT'CPy^-V) + Dn(-Px-VT^y^-V) 

" 2Dn(-VT,0,5-VzT) 

where we ass me that the turbulence is stationary so that W^U) is not 
pvn!^0? 0f-tlm! 0ri9in   (t)-    Equation  (9) my be written6Susing the explicit Fourier transform relationship 

(10) w65U) dx DS(T) e ■JWT 

and in terms of the index of refraction spectrum 

(ID Dn(X.Y,Z) = 2 

OO 00 

die 
y J 

oo -oo 

The result is 

(12) Jo. 
L 

I' 
0 

dKz (l-cos(KxX+KyY+KzZ) 

X ^n^x^y^z5' 

00 00 00 oo 

W6s(^4)?:o}k2 j^jdnjde jdKx|dKy|dK 
-03 «OO «OO —00 

Cn
2(nH<0)(VVK2) 

E xp {j(KxRx+KyRy+Kz5"e+T)| -exP {■^x'VKy W-e"T)} 

-exp {j(-KRx-<yRy+Kze-e
+T)| -exp {-j(-icRx-KyRy+K25-e"T)| 

+2exp |j (KZ5-C+T )j- +2exp l-j {K^-C'I )}• I 
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where the cosine terms have been put in terms of exponentials and 
where 

R   = pr- cose is the range dependent x component of 
ray separation 

R   = prsine    is the range dependent y component of 
y ray separation 

E1   =  K   V+K   V   ±w   . 
X       z   z 

Equation  (12) is the complete expression for the time-delayed 
phase difference spectrum and hence concludes the first step. 

We now perform each of the indicated integrations except that 
for the average range coordinate n, so as to obtain the differential 
path contribution to W^u).    The ? integration is easily performed 
resulting in six delta functions involving KZ in the remaining integrand. 
The KZ integration is performed with the result 

(13) w6s(u) = {?:o}^ 
00 00 

dn ck 
-00 -00 

CV0)(K   ,K-   ,0) n n     v x   y exP{j(KxRx+KyRy-e;x)} 

-exp|-j(KxRx+,cyRy-e-xx)}-exp{j{-KxRx-KyRy-e;T) 

-exp|-j (-KxRx-<yRy-exT)-+2exp- -je^} 

f     - 1 +2exp|+jexT 

where e    = K V+u. 
A A 

Equation  (13) shows that only the transverse wind velocity  (V) con- 
tributQ<i to the temporal  spectrum, which agrees with Tatarski's 
qualitative analysis.    The relatively small end effects, which arrise 
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when the longitudinal wind (Vz) moves turbulence into ^nd out of the 
beam at the transmitter and receiver» are insignificant for phase 
point separation much less than the path length. 

The above result is a direct consequence of the often used 
approximation of extending the E,{=Z2-Z-\) integration limits to ±" in 
the original derivation of Ds(p). 

The T and <x integrations are done in a similar manner with 
the result that 

(14) W6S(U) = S^ojAV1   jdn j d 

Cn^n0)<H>0) 

>#x+yv}-HvVKyRy} 

,(0) where tj ; is even in each of its arguments. 

Equation (14) may be put into a convenient form by defining 
dimensionless variables 

(15a) 

(15b) 

(15c) 

ü - ^-   = normalized frequency, 

R(n.v) = pf\   = normalized separation 
o 

normalized outer 
scale. 

(15d) u H g. = normalized range. 

The v dependence of the constant    B(v) is described later in Eq.  (17c) 
In terms of the new variables 
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I (16) 
6S 

Bl6(?;o}»2k2LV'1p"1fl fdu ^(u)ß(u.v) 

J K[1- £ cos{[-cose + K3sine]fiu) 

- 9-cos([cose + Kesine]nj)] K   (~Jk**0)t c nop 

<wP 
where K = ^- and the ever.sss of the < integration has been used to 

change the integration range.    Equation  (16) is quite general because 
neither the functional  dependence of c2(u).where u is the normalized 
averane range coordinate nor the form of ♦^(icx.iey,^) has been specified. 

In order to determine the differential path contribution, we now 
define a generalized index of refraction spectrim 

(17a) *n
(0) = A(v) 

S(v) 
CuJ + S + Ky + Kz 

v+3 
2 

where L0(n) is the range dependent outer-scale, and 

(17b) A(v) = L?feTT  r(1-v) sintO-v) jfl 
A(l) = l/(27r2) 

0<V<1 
l<v<2 

(17c) B(v) ,1-v     ^  l) 

r(^) 
— 

Equation  (17a) is a generalized Von Karmen index spectrum with a high 
spatial  frequency dependence of 

-   — ■- - ——>-— a^MHtaM 



2.  2. 2 
x   y    z 

2 

The generally used value of v is | for which A^) = 0.033005 and 

B(|) = 1.0710. 

The parameters A(v) ar )d B(v) are defined so that 

'^ 
r « Lo 

(18)             Dn(r) = < • 

n   o 
r»L0 

Equations  (17b) and (17c) are derived from Eq.  (17a) and the limiting 
forms  (Eq.   (18)) in Appendix B. 

We now substitute Eq.  (17a) into Eq.  (16) and after rearranging 
terms obtain 

0 
D 
0| 
0 
ii 

0 

0 

0 

(19) 
"»'<' 

W\ (^)i 

i 

I 
.v+2- 
■ t 

r(^) 
2r(^) 

(v+2) du c2(u)ß-(v+2)(u,v) 

x    I dK[l- ^cos([-cose+Kß(u,v)sine]fiu) 

I! 
|cos([cose+Kß(u,v)sine]nu)] 

x (1+/) 

(^) 

8 

[1 
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When   |{±coso+ßsino)«ul  << 1  Eq.   (19) becomes 

-1 

(20) 
W6S(<) 

r-   r/
v+2P 

„JO.SI   5/2(r(V2 M.,  v.2,   v+1 
11.Oj77      l^p3dA(v)k LP 

L2 r^b 
duC2(u)3"(v+2) (U,v)f 

dK[cos2o-^ ß2(u,v)sin2e][1+K2]     2    , 

The K integration is easily performed giving 

(21a) 
w6s(fi)(|) 

0.5 
1.0 

/v+2. 
5/2/r^ 2  ^ 

= n 

r,^lAWkV+1 

du coS
2e+^M^lsin2( 

V 

c2(u)3(u)vr^+2)(^). 

and for a horizontal path 

(21b) 
w6s(o)(jO 

0.5 
1.0 

and 

(21c) 

^i^5)^'^v+i^ 
2    2 

x [n2cos2e+(^-^-)sin2e] v 

8^/2 Ä WV - 4-384, 

=   (.2+R2)   ( 2  ) 

du 3uc 

•   —• M^^^KalMg^MMM 
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When   |(±cose+ßsine)fiu|  << 1  Eq.   (19) becomes 

(20) V^lg 
0.5 
1.0 

5/2!fr(V2  A.,  S.Z.   v+1 
TT      I——TO-A(v)k Lp 

-   rrv+2p"!      i 

L2 r(^) 
fi-

V jduc2(u)3-^+2)(u,v)f- 
0 

(#) 
dK[cos2e+K232(u,v)sin2e][l+K2]     :* 

? 

The K integration is easily performed giving 

(21a) 
wös(ß)(i) 

,-v 

p/o.sl   5/2[r(V2  )V.,  v.2,   v+1 
du C0S2e+LJiML).sin2f 

v 

<(u)S(u,vr(»+2'(3f), 

and for a horizontal path 

(21b) V<! 
'r(^)^ 

-=   (^+R£) 2^n2N   l   2   J 

2,   v+1 „2 8t¥/2\7^r^v^ 
J^I 

2. „2 
x [n2cos2e+(^-)sin26] [du 3u4 

6 

and 

(21c) 8^5/2 Ä A(2/3) = 4-384. 

„>.  •    - mäa i^^MMMMi 



Thus, there is a quadratic variation  (along with any Cp or 
(i(u,v) variation) of the differential path contribution to WgsCn) with 
range when n is small. 

When  |(cose±ß(u,v)sin6)fiu| >> 1 the cosine terms oscillate rapidly 
and we replace them by their average value  (0).    The phase difference 
spectrum is 

{22a) 6S p = o-{v+2) 
1 

0.5 
1.0 

5/2/^)' A(v)k2Lpv+1 

duc2(u)3'(v+2)(u,v) 

0 

and for a horizontal  path 

(22b) 

8^ 0.51   5/2 l^h ir(^). 
A(»)k2Lpv+1C? 

9     9 
{ü +R  ) 

(#: 
du 

Equations  (22) show that for large u^, the only variation in the dif- 
ferential path contribution is due to C^(u) or ß(u,v).    Figure 2 shows 
the limiting forms and the break point location when the path is 
horizontal.    A typical  differential path contribution curve would 
smoothly pass from the low frequency form to the high frequency form 
and then oscillate with rapidly decreasing amplitude about the high 
frequency (constant) amplitude.   This completes the second step. 

The third step i 
the final equations. 
1, for the generalized 
3 and 4 for the usual 
spectral amplitude has 
give 0<ü3<«'(one sided s 
path 
(19) and, 
obtain 

pectrum).    In 
solution for W^u), we ghange 

s to integrate Eqs.   (21b) and  (22b) to obtain 
The resultant equations are tabulated in Table 
index spectrum and in more detail  in Tables 2, 

case of v=2/3.    In each of the four tables the 
been multiplied by 2 and the range of u halved to 

order to get the complete horizontal 
the order of integration in Eq. 

assuming constant C£ and L0, perform the u integration to 
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TABLE  I 

The limiting forms of the one sided phase difference spectrum 
for any relative orientation  (e) of phase points and wind 
velocity (V), and for a Von Karmen refractive index spectrum 
having an index structure function D   % C^rv when r << L0. 

2Trfp 
V . R = 

A_1(v) 

B(v)< 

&n 

B{v) 
J-V 

1/v 

^yrd-vkos^) 

Zv 

0<v<2 

0<|v-l|<l 

k. 

|± cose+(n2+R2)1/2sin9|« ft 

W
5S(»'SL 

16 0.5 
1.0 

^"TM./ N.2, v+1 5/21 

. ^2+R2).(v+2)/2[;: 2     2 
COS   6+ ¥*^i 

r(^) 
|3-A(v)ktLp^ 

[±ncos +(n2-t-R2)1/2sin6| » ft 

öS p 

!«?> 5/2 fr(^) 

.   (oV)-(vt2'/2 

0 
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il 
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TABLE  II 

The one sided phase difference spectrum limiting forms 
for any orientation of phase points and wind velocity 

a,hZ> R  5 
1.071, v = 2/3 

|±ncos +(a2+R2)1/2sin9| « v^ 

65     p__ 

B.^:| 
k2L C2p5' 

r/3 ■  (^R2)-4/3[4^^ tff)s    ] 

R-8/3 p2cos2e   + R2sin2e]t       R ^ n 

6 

.2. -2/3 fcos e . sin el a » R 

l.^cos ■i-(^2+R2)1/2sino| » /S 

-  («2
+R2)-4/3 

j-8/3 

= n •8/3 

R » fi 

fi >> R 

13 
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TABLE  III 

Phase difference spectrum limitinq form when the winrj 
direction is parallel  to the line connecting the phase 
points 

n . 2*f& R = 1^      6 = 0^.     v = 2/3 

R « /S" 

«„«.)(!) 
■ J R"8'3 ^ 

8.77|°:^k2L C^pS/3 R » fi 

■ 1 «-2/3 /B" ^> fi >> R 

. ö-8'3 n » /B" 

R » ^" 

' J- R"8'3 n2 e^'V'7 »o 

= !i-
8/3 n» eV'V'7 

0 
11 

1.1 
II 
LI 

I 
1 

I.I 

u 
0 
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TABLE  IV 

Phase difference spectrum limiting forms when the wind 
direction is perpendicular to the line connecting the 
phase point 

ii = 
"jtf^ 1.071, 

o = 90c 2/3 

<< /6 

- 1 R-2/3 
- 4  « 

■ 1 ^ 2 » » » R 

n » 2 

* 

R » /B" 

- R-8/3 R » fi 

w"873 n » R 

15 
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(23) 

0.5 
1.0 

w«s (>;)(-V-) 

v+1 i 
2 

„/v+2j 
1(T ) 

,r(f) 
lr(4-30 

^AC. .)k2Lf 

,,/v+3\ !(2-)J 

x    I (k 

Ö 

1 - 
1 sin[{-coso+K."sinejrJ 
2 {- cose+<ßsinelfi 

1 sin[{coso+<3sino}n] 
2"   {coso+Kßsine}fi 

2-(^) 

The integrand in Eq.   (23) contains the spatial  frequency filter 
functions and the normalized index of refraction spectrum.    Figure  3 
shows the filter functions for a particular normalized separation  (R) 
and normalized frequency {u), and three orientation angles  (o).    The 
normalized index spectrum Is also presented.    For 0° and 90° the two 
sinx/x terms combine to yield a single term.    The 0° case has a 
constant amplitude dependent only on a.    The 90" case filter function 
is a sine function, which discriminates against the low index of 
refraction spatia1  frequencies.    The general  G case filter function 
is represented by 0=15° which has two 1/2 amplitude sine functions 
that are displaced from the origin. 

The integral  in Eq.   (23) is readily found using numerical 
integration.    The zero degree case is easily evaluated because the 
filter factor is a constant.    In th^s particular case 

(24) 
WÄS(Q){^ öS p 

8|0.5l^,5/2A(v)kV+lc2 
= [1 - sirn^ ][R2*tl2] 

(#) 

Figures 4-7 present the computer generated curves for R = 10, 1.0, 
0.1, 0.01; for o = 0°, 5°, 15°, 45°, 90° and v=2/3.    Also included as 
narrower lines in the figures are the asymptotic limits determined from 
Table 2  (e = 0°, 90° can also be obtained from Tables 3 and 4). 
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Fig.  3.    Examples of the  -patial spectral  filter functions for 
various phase point orientations, and the normalized 
index of refraction spectrum. 
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Fig. 5, Normalized phase difference spectrum for a horizontal  path 
versus normalized frequency and orientation angle, when 
the normalized separation is 1.0.    The light lines are the 
limiting forms from tables 2, 3 and 4. 
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Fig. 6.    Normalized phase difference spectrum for a horizontal  path 
versus normalized frequency and orientation angle, when 
the normalized separation is 0.1.    The light lines are the 
limiting forms from tables 2, 3 and 4. 
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Fig.   7. Normalized phase difference spectrum for a horizontal path 
versus normalized frequency and orientation angle, when 
the normalized separation is 0.01.    The light lines are the 
limiting forms from tables 2, 3 and 4. 
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Figure 4 is for the case 

R = 1 071^ _ 
Uo" 

10 

which represents a large phase point separation compared to the outer 
scale.    The low frequency offset between the computed curves and low 
frequency asymptote is due to a higher order term (a constant) that is 
not included in the low frequency asymptotic solution.    An interesting 
feature of this figure and following Figs. 5, 6 and 7 is that the 
nomialized spectrum approaches a constant level  for small normalized 
frequencies except for the case when the wind is exactly parallel  to 
the phase point separation  (e=0o).    A second general  result is that the 
nigh frequency spectra is independent of orientation angle (e) and the 
normalized separation  (R), and hence it is also independent of the 
outer-scale. 

It is the mid frequency range that is characterized by the 
normalized separation.    For small 

J/B"    e = 0° [ R< e = 90 "f 
the mid frequencies which have a -2/3 slope extend from n=R to $=& 
for e=0o and to n=2 for 0=90°.    Thus for small  R, that is phase point 
separations much less than the outer scale, the lower mid frequency 
break point determines R and hence L0 since the phase point separation 
is known. 

We may also determine the exponent v in the phase structure 
function  (Eq.   (18)) from phase difference spectrum data by taking the 
ratio of parallel to perpendicular spectra amplitudes for the case of 
small  normalized separatioro (R) and small or intermediate normalized 
frequencies  (n).    From the equations for the limiting forms given in 
Tabl e  I, the rati o i s 

( 
ü 

ü2 + R2 
)v< 

This ratio is accurate when fi « R « 1 or R << n << 1 as can be seen 
in Fig.  7 which shows both the limiting form results and the exact 
results calculated for the particular value of v = 2/3.    The in- 
equality  (R«n<l) defines the more useful n range because the ratio 

([ 
ü 

R2+Q2 
]v) 

22 

n 
D 
D 
G 

II 

I 

[] 

I 

/ 
/ 

r 
WMWMI 



I 

simplifies to      itself.    Therefore we have a convenient means of 
testing the  fundamental   index of ^fraction structure function 
equation which is widely used in turbulence theory  (see Eo    (18)) 

III.     PHYSICAL  PICTURE 

In order to get a better physical  picture of the  factors in- 
fluencing the phase difference temporal  spectrum we re-examine several 
of the previously developed equations. 

First put the fundamental  definition of the phase difference 
spectrum given in Eq.   (2) in terms of correlation functions. 

(25) WtSs((1,) =  F(2Bs(0,r) Bs(+,>,.) - B  (■ s )). 

Hence W^U) is the Fourier transform of a combination 
lation  functions.    The first two correlations which are 
one term are between the phase of one ray  (see Fiq    1) 
of the same ray at a time T later.    This is equivalent 
correlation between two parallel  rays separated by a di 
from Taylor s frozen turbulence model.    The last two te 
cross correlations.    The cross correlations are between 
ray and the time delayed phase of the other ray.    Again 
frozen turbulence hypothesis the time delay correlation 
a lateral  displacement of the upward ray in a direction 
transverse wind direction.    In one case the rays ar« mo 
so that  they do not cross  (0<z<L) and in the other casp 
each other or cross at a point intermediate to the ray' 

of four corre- 
combined into 

and the phase 
to the same time 
stance vx arrising 
rms are phase 
the phase of one 
using Taylor's 
is equivalent to 
opposite to the 

ved further apart 
they approach 

end points. 

Now consider the differential  path contribution to W^a,) from 

EaTTU^H f^V   {2xK)'.aS  refleCled 0n  the corresp^ding tenns in Eqs.   (21b) and   22b).    The first term is proportional  to ranqe and 
gives a constant differential  path contribution while the las? terms 
have a pronounced range dependent variation due to the ranqe dependent 
separation between the two rays.    Thus the range terns in the diPf?erential 
path contribution to WSs increase with range and tend to approach a 
constant toward the end of the path, thus qualitatively verging ?he 
range dependence of Eqs.   (21b) and  (22b). «"-'veiy ventying the 

In order to investigate 
refractive index spatial spect 
sider the 3-dimensional phase 
each combination of values of 
grating with periodic phase va 
±z directed gratings influence 
they do not contribute to the 
<z in Eq.   (19)  (for example), 
have normals in the x-y plane 

the physical  interaction between the 
rum and the experiment geometry con- 
grating model of the atmosphere where 
K/'Ky and K2 corresponds to a phase 
nation in the x'direction.    The 
each ray in exactly the same way so 

phase difference and hence the zero for 
Hence we consider the gratings which 
Figure 8 further shows two examples 
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Fig. 8.    Phase grating model of the experimental situati ion 
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of grating orientations  (with ,-7=0), that is, gratings with < directed 
perpendicular and parallel  to trie separations.,    The gratings with 
normals perpendicular to the separation do not influence the phase 
difference while the parallel  case has the maximum effect on the phase 
difference.    Hence the filter function of Eq.   (19) has projected the 
gratings with normal  in x-y plane onto the separation vector. 

It  is  the  x component of the index spectrum which couples 
spatial  and the temporal  frequency variation of the phase difference 
as the wind moves past the phase points 
component that produces the frequency w 
Furthermore, if a particular 

Hence it is the • x = ^/V 
in the temporal spectrum. 

(n an integer) which has an associated gratong wavelength, n)^, that is 
equal  to the local  x component of the ray separation  (Rx). then the two 
rays experience identical  phase fluctuations and thus zero phase difference 
at that point on the ray.    Hence there is a zero in the differential  path 
contribution to the temporal  spectrum at that point.    Maxima on the 
temporal  spectrum occur when n is replaced by  (n+1/2).    This effect is 
found in Eq.   (14), upon expanding the cosine of the sum of two angles and 
combining terms.    These maxima and minima are in the plane wave spectra 
because tliere is only one separation for all  points on the rays.    But 
the maxima or minima at one point on the spherical wave path is added 
to the contribution at other points where the filter function is 
neither at a maxima or a minimum and hence the spherical wave spectra 
is nearly free of local oscillations in amplitude. 

As a final  comparison we note that the low temporal   frequency 
spectrum approaches a constant amplitude because of u/V = K:X has selected 
a spatial   frequency in the saturation region of the index spectrum.    The 
exception is the 0° case where the filter function has a strong influence. 
The high frequency temporal  spectra goes as 

V 
(v+2) 

1 

/     1 o\   

which results from projecting the K'^V    ' index spectrum in the p 
direction.    This completes the description of salient features of the 
temporal  spectrum in terms of physical  concepts. 
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IV.  CONCLUSIONS 

The phase difference temporal  spectrum has been evaluated for 
arbitrary orientation of the phase observation points in a plane 
perpendicular to the beam axis.    The calculation has been based on 
pnM.Hnnc h     sPectral expansions and the Rytov approximation but the 
equations have been rearranged to emphasize their relationship to the 
physical  picture using a phase screen model.    The calculation uses a 
generalized index of refraction soectrum which has arbitrary power 
law dependence in the inertial subrange and includes outer-scale 
enects.    This generalization allows one to directly test phase 
difference spectra measurements to check the generally acceoted r-1V3 
nufp". !"C^    The ^OP^ also allows a direct evaluation of the 
UULCr-scaie. 

For a (K) to the (v+3) power law inertial subrange spatial 
frequency dependence, a (<) to the  (v+2) power law high frequency 
phase difference temporal  spectrum is predicted, indeptndent of 
phase observation point orientation.    The low frequency temporal 
spectra are strongly orientation dependent.    These features are 
indicated in graphs of typical  cases. 
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APPENDIX A 

In this appendix we obtain the phase structure function in terms 
of spatial coordinate integrations from the often used spectral ex- 
pansion results. 

We start the calculation by comparing the spherical wave phase 
structure function  (Carlson, 1969) 

(Ala) Ds(p) = sA2    | d< [l-J0(icp)]K    | dn C^n) (L) 

m2 (y^ij ,(o) ^ 

and the spherical wave, wave structure function 

(Alb) 
L 

DW(P) = BkV    f dic(l-J0(Kp))K | dr, C2(n) (^) 

where 

P 
L 

C2(n) 

(0) 

is the source wave number 
is the measurement separation 
is the propagation range 

is the turbulence strength 

<!>„    (<)    is the turbulence spectrum 

and K = 2  .    2 
<       +   K 

x     y 

The phase structure function in Eq.  (Ala) is identical to the 
wave structure function in Eq.  (Alb) except that the former has an 
additional cosine squared term in its integrand.    For the case of 
small separation?   (p) and long ranges  (L) the cosine squared term 
oscillates rapid'iy during the significant part of the K integration 
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and we can replace the cosine squared term by its average value  (0 5) 
When p is large and L is small, the cosine squared te^remans essenti.llv 

(A2a) DS(P) {f:| wy 
Using Eqs.   (Alb) and (A2a). and setting <'  E < ^-yields 

n 

L 
(A2b) Dc(P) = 8k2.2|?:|     : 

0 
, dn Cn(n)     | (JK1 

[^oi^^U')) 

of the^n^J!JU5SeqUent e^ati0^> ^P the prime.    < is the magnitude 
depenLn?e Jf the ?nlH^lnf the X"Y V™'   We w^in the orientation aepenaence of the spatial frequency by using the identity 

2 

(A3) 27        dn'l-cosC^cos.j.)) = 1-J (M£.) 
0 0   L 

ä'lA^^nSNo"9!!^*!?"/ and P in the X-Y Plane-    Substituting cq.   {R3) into Eq.   (A2) and chanaina tn rprtann.ii^^ ~ u.-*.. ...•-•.^. langmg to rectangular coordinates yields 

(A4) DS(P) = 4 i?:o} ^ dn Cj{n) 

*n
(0)(Kx.Ky.0)(l-cos  {f ( 

VxVy? 

IwcÄ^nS^S t!tWHen the thre dimensional  i"dex of refracti spectrum and the two dimensional spectrum Is 
on 
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(A5) *n
(0,(K    .K    .0)   =   1 F(K

x»<y.k.|) dr., 

and the relationship between the two dimensional  index of refraction 
spectrum and the index of refraction structure function is 

(A6) d< 

oo 

S ^xV^IW-cos {(f)(«xpx+yy)} 

resul 

(A7) 

= Dn  (£px.gpy.U|) - Dn(0.0.|5|). 

Substituting Eqs.   (A6) and (A5) into Eq.  (A4) yields the squired 

Ds(p) = 

«o L 

Dn(0,0.c) 

where we drop the magnitude sign since we squire that Dn be oven in 
each of its three arguments. n 
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APPENDIX B 

We will now derive the constants in a generalized isotropic 
Von Kamen index spectrum such that the corresponding index structure 
function is 

(Bl) Dn(r) = i 
i^ 

n    o 

r << L 

r >> L, 

where C^ is the turbulence strength, and L0 is the outer scale. 

The inclusion of the parameter v allows the experimentalist to 
test the widely used 2/3 power (v=2/3) variation of Dn with separation  (r). 

A general expression for the three dimensional  isotropic index of 
refraction spectrum is 

(B2) *n(K)    = 

A(v)  C 

[(B(v)/Lo)
2 + <2jV2 

where the constants A(v) and B(v) are to be evaluated.    The exponent 
has been chosen such that 

00    00     oo 

(B3) Dn(r) - 2 
i     J     J 
— OO—00—CJO 

(l-cos(K-r)) $n{K) dK 

The general inverse transform relationship (Tatarski 1961) for iso- 
tropic turbulence is 

(B4) Dn(r) = BIT 

a 

Substitute Eq. (B2) into Eq. (B4) to obtain 
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:1 

{B5)    Dn(r) = STT A(V)  C^ 

Then change variables 

{B6) w = KV 

and obtain 

STJTjcr 

L>    o 

_v+3 dK 

m^ 

(B7) Dn(r) = STT A(V) C^ rv sinco 
u 

2   . 

v+3 
Brr. 2   2 

When r/L0 « 1 we drop the  Br/L0 term as being small  in comparison to 
w during the significant part of the integration, and using Eq.  (Bl) 
obtain 

(B8)   A(v) = STT    j   (1 

L      0 
u      j 

(v+l) 
-1-1 

u du 

that 
The integration is put into a more tractable form by noting 

i 

{B9) • nw  )    -(v+l) . i 1 UJ  x      'do) 

a 

da    I  db sin(büj) ü)"V 

0       0        0 

Equation (B9) is easily evaluated when v=l, the result being IT/4 
When v^l, interchange integration limits and using 
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(BIO) sin(w) u"v du = r{l-v)sin (1-v) 1- 

to obtain A(v) when 0 <  |v-11  < 1.    The final  result for A(v) is 

-1 
871 £1 (PH) A(v) - I^J^ r(l-v)sin(l-v) ||        0 < v < 1 

1   < v < 2 

m71 v " 1 

When U E K/B is substituted into Eq,  (5) the result is 

(B12) Dn(r) = BvclMv) f^M 

sinK 
^ 

u2du 

(Uu2)(v+3)/2 

When rB/L0 >> 1 we may neglect the sine term and easily integrate to 
obtain an expression involving the remaining constant B(v).    Using 
Eq.   (Bl) 

(B13) B(v) ■ [4TT 8(3/2, v/2) A(v)]v . 

Upon substituting Eq.   (B11) into Eq.   (B13) we obtain the final 
expression for B(v). 

(B14) B{v) ■ 20-v) _lM 
rGf) 

1 
V 

is 
The complete expression for the phase structure function 
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(B15) Dn(r) = cV h - r(v/2)2    2    [rj&i]* 

;/2 Wl 
where we have used Tatarski's  (1961) transform pair, 

0 

II 

I 
! 

34 

I 
II 
II 

 «■i'"" »■" "  ■inMiimi 


